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I W(x)o~s(2uH-2x)dx 
ucz¢ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (A8) 

I W(x) c~s(2u~-2x) dx 
., U H - - X  

I W(x)o~s(2uL+ 2x)dx 
UCL : (A9) 

I W(x) O~S(2UL + 2x) dx 
UL"]- X 

The explicit arguments of the cds are (2 values; the 
other parameters are understood. 

Since the e's may not be known, our approximation 
is to replace them with the spherically averaged values. 
The term in braces in (A7) may then be obtained as 
the difference between the appropriate curve and its 
asymptote in Fig. 2(b), or analytically from (A3) and 
(A4). The terms in (A8) and (A9) may be read from 
Fig. 2(a) or evaluated from (A5), (A2), or (6). Sur- 

prisingly, the needed quantities may be obtained with 
sufficient accuracy from the Figure, but the process is 
somewhat tedious. 
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Algorithm for Determining the Symmetry and Stacking Properties of the Planes (hkl) 
in a Bravais Lattice 
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An algorithm is presented which enables one to determine in detail the symmetry and stacking properties 
of the planes (hkl) in an arbitrary Bravais lattice characterized by the quantities a, b, c, cos 0e, cos fl, 
cos y. 

1. Introduction 

The problem of mapping a lattice plane was originally 
formulated and solved by Jaswon & Dove (1955) and 
more recently, using the tensor formalism, by Bevis 
(1969). Nevertheless we believe that it is worth con- 
sidering the present procedure since it possesses some 
new and useful features. 

Firstly, all considerations refer to the symmetry of 
the plane (hkl) which was discussed neither by Jaswon 
& Dove nor by Bevis. 

Secondly, our results, unlike those of the above 
authors, are presented in a unique way. This is, of 
course, important when comparing various calcula- 
tions and compiling tables. The following example 
shows it clearly. Jaswon & Dove determine in their 
paper the configuration of the lattice points in the plane 
(295) in a primitive cubic lattice to be a parallelogram 
of edges 1/29 and 1/106 and included angle cos-118/ 
(1/29 x 106). This parallelogram contains four interior 
lattice points in addition to those at its corners. If they 
applied their procedure to the equivalent planes (952) 

and (259) th.ey would have obtained quite different paral- 
lelograms with 1 and 8 interior lattice points,respectively. 
Alternatively the tables obtained from our algorithm 
give the cell of edges 1'19 and 1/6 and included the 
angle cos-l(l /]  f4/57). These numbers are unique, since 
the cell is primitive and has the shortest possible 
perimeter. Also the symmetry of the plane can be readily 
recognized. Moreover it is not immediately patent 
that the results by Jaswon & Dove and ourselves are 
identical. 

Similar comment applies to the procedureof Bevis. 
Though the resulting parallelogram here is without 
interior points, its shape depends on the choice of the 
integers m,, m2, m3 satisfying the Diophantine equation 

m l  u l  -at- m 2 u  2 "Jr- t773 u 3  = l . 

But this equation has infinitely many solutions provided 
the u i are integers without common factor. 

Thirdly our procedure is formulated as an algorithm 
and this way has some advantages, too. The greatest, 
of course, is the possibility of applying a computer 
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directly. Further the process can be phrased as short 
as possible since all auxiliary concepts may be ad- 
journed to the proof, which may be easily performed 
in a rigorous way customary in contemporary mathe- 
matics. According to our opinion the root of the prob- 
lem lies much more in the theory of numbers than in 
geometry and therefore tensor formalism has not been 
used. 

The original theses, of which the present paper is an 
abridgement, involve a full discussion of the concepts 
mesh and fundamental cell, especially the proofs of 
their uniqueness which motivates the convenience of 
them. It turned out that although these concepts are 
very intuitive ones the rigorous proofs are not simple 
at all. Although this discussion has not been included 
in the present paper for the sake of brevity, we con- 
sidered it useful to quote the definitions of these con- 
cepts and give the theorems concerning their uniqueness 
at least without proofs. The achievement of rigorous 
and pure formulations, concepts and proofs was one 
of our chief aims. 

Two-dimensional Bravais lattices may be divided ac- 
cording to their symmetry into 5 classes, namely those 
consisting of squares, rectangles, equilateral triangles, 
rhombs or only rhomboids. In the present paper we 
are interested in the symmetry and stacking properties 
of two-dimensional lattices lying in the rational planes 
(hkl) of a three-dimensional Bravais lattice. The rela- 
tionship between this lattice and its two-dimensional 
parts need not be particularly simple. For example, in 
the primitive orthorhombic lattice (cos c~=cosfl= 
cos 7=0)  the planes (123) consist of squares if 6a 2= 
3 b  2 = 2 c  2, o f  equilateral triangles if 24a z = 3b  2 = 8c  2, o f  

rectangles if either 6a 2 = 3b 2 ~ 2c 2 or a z - 2b z -  c 2 = 0, of 
rhombs in the following six cases: 24aZ=3b2¢8c 2, 
8 ( b  2 - 5 a  2) = 8c  2 ~ 3 b  2, 3 b  2 ¢ 2 4 a  2 = 8c  2 ~;& 12b 2, 3a 2 -  3b 2 
- - C 2 : 0 ,  aZ-5b2-3c2:O, aZ-8b2-3c2:O; and in all 
other cases only of rhomboids. The knowledge of the 
symmetry and stacking properties of rational planes 
may be useful in various problems. We need only men- 
tion stacking faults and twins with rational composi- 
tion planes. Some other applications are mentioned in 
the papers listed at the end. 

Our results are formulated in two theorems, refer- 
ring respectively to the symmetry and stacking of lat- 
tice planes, and one algorithm. The reasons for this 
division are not only formal. The algorithm shows a 
certain way how to find the integral numbers needed 
in the theorems; in special cases, e.g. solving other 
similar problems, it may be possible to find them in a 
shorter way and to use the theorems directly. 

The algorithm is phrased in such a manner that a 
computer can be immediately applied. Two procedures 
in ALGOL 60 were developed by the author.* One of 
them, using real quantities, is applicable to any Bravais 
lattice and any rational plane. The other relates to 10 
of the 14 types of Bravais lattices (namely those with 
cos c~ = cos fl= cos 7 = 0 and the hexagonal) provided 
that a, b, c are integers. Here only integer quantities 

are used and the decision about the shape of the two- 
dimensional lattice may be done by the computer itself. 
By means of these procedures tables for primitive, 
face-centred and body-centred cubic lattices involving 
planes (hkl) up to Max (Ihl,lkl,lll)=lO were calcu- 
lated.* 

It may be perhaps of some interest that the algorithm 
is applicable not only when the lattice and the plane 
are given numerically. Also general discussions are pos- 
sible when the shape of the lattice depends on one or 
two (or perhaps more) parameters (see the above ex- 
ample). A preliminary account of the algorithm was 
presented by Gruber (1966). 

2. Notation and auxiliary concepts 

The five shapes of parallelograms are denoted as fol- 
lows: S - square; R - rectangle (which is not an S); 
E - rhomb with. two 60 ° angles; D - rhomb (which is 
neither S nor E); P - rhomboid (which is neither of 
S,R,E,  D). The symbol [a] (a a real number) will be 
used, as usual, for the integer satisfying 0 < a - [ a ]  < 1. 
The symbol HCF ( h b . . . , h n )  ( h b . . . , h n  integers not 
all equal to zero) designates the positive highest com- 
mon factor of the numbers h i , . . . ,  hn. The meaning 
of the expressions t = B - A ,  B = A  + t (A, B points, 
t vector) is clear. If a, b, c are linearly independent lattice 
vectors of a Bravais lattice M, then [a,b,C]M designates 
the set of all unit cells U of M possessing this property: 
there exist such corners O, A, B, C of the cell U that a = 
A - O, b = B -  O, c = C -  O. Similarly we define the sym- 
bol [a,b]lv for a two-dimensional lattice N. 

Consider now a two-dimensional Bravais lattice N. 
Any of its unit cells with shortest perimeter will be re- 
ferred to as a fundamental cell. Such a cell is always 
primitive. A unit cell U of the lattice N is termed its 
mesh, if it represents the symmetry properties of this 
lattice. Rigorously, if it is primitive and one of these 
two cases occurs: (1) U is not a P;  (2) U is a P, U is a 
fundamental cell of N and all primitive unit cells of 
N are P's. For these two concepts simple assertions are 
valid: Any two fundamental cells of  the lattice N are 
congruent. Any two meshes o f  the lattice N are con- 
gruent. Thus denoting by p, q (p < q) the lengths of the 
sides and by gt (9' < 90 °) the size of the angle of a fun- 
damental cell of N, these quantities are uniquely deter- 
mined by N. The same may be said about the quan- 
tities x,y, ~o introduced in a similar way for a mesh of  N. 
The mutual relationship is shown in Table 1. 

Accordingly a fundamental cell is simultaneously a 
mesh unless 2 pq cos V =p2 < q2. 

Further let N '  be another two-dimensional Bravais 
lattice which has originated from N by translation. 
This translation is determined by any vector r connect- 
ing a point of N with a point of N'.  For our purposes 
it is convenient to relate this vector either to a funda- 
mental cell or to a mesh of N. Real numbers 

* They may be obtained from the author on request. 

A C 26A -4 
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tl, t2,t3 (1) 

(in this order) will be referred to as parameters o f  the 
mutual displacement (p.m.d.) of  the lattices N, N '  with 
respect to fundamental  cells, if points O ~ N, O' ~ N '  
and vectors p ,q ,k  exist in such a way that  

(1) [p,q]2v are fundamental  cells of N; 
(2) IP[ -< Iql, P .  q > 0; 
(3) Ikl-- 1, p .  k = q .  k = 0 ;  
(4) hP + t2q + t3k = O' - O .  

If  p.m.d. (1) fulfil 0 < h < 1, 0 _< t2 < 1, t3 >_ 0 ,  they are 
said to be standard. In a similar way we define the 
p.m.d. 

! t t 
t l , t2 , t  3 (2) 

of  the lattices N, N '  with respect to meshes. 
The s tandard p.m.d, are not  uniquely determined by 

the lattices N and N' ,  nor  is the lattice N '  uniquely 
determined by the lattice N and the p.m.d. But this 
gives no trouble. The significance of  these concepts 
may be seen from the following assertion: I f  N '  and 
N "  have originated from N by translation and/ f (1 )  are 
p.m.d, o f  N, N '  as well as of  N, N" ,  then the sets 
NO N',  NO N "  are congruent. This means that  the 
lattices N, N '  have the same 'relative position'  as the 
lattices N, N " ;  and we are only interested in this rel- 
ative position. 

Therefore, by p.m.d, of the planes (h k l) (with re- 
spect to fundamental  cells or to meshes) we under- 
stand the p.m.d, of  the lattices N, N '  lying in two neigh- 
bouring (h k l) planes. 

3.Theorems and algorithm 

In this paragraph a three-dimensional Bravais lattice 
M and rational planes (h k l) are given. The integers 
h, k, l relate to a primitive unit cell U of  M characterized 

by the quantities a, b, c, cos ~, cos fl, cos ),. Thus denot-  
ing 

X =  1 - cos 2 tx - -  COS 2 ~ - -  COS 2 ~ 2 r- 2 cos c~ cos fl cos 7 ,  

the inequality X > 0  is satisfied. The assumption that  
U is primitive is essential as well as the fact that  h, k, l 
are without common factor. A two-dimensional  lattice 
N lying in one of  the planes (h k l) is chosen, 

p,q,~u, x,y,~o (3) 

having the same meaning (with respect to N)  as in § 2. 
The following notat ion is applied th roughout :  

V -- H2a  2 W K2b 2 + L2c 2 + 2 H K a b  c o s  y 

+ 2HLac cos f l+ 2KLbc cos 
V '  = H'Ea 2 + K'Zb 2 @ L'2c 2 + 2H'K'ab cos y 

+ 2H'L'ac cos fl+ 2K'L'bc cos 
I4" = HH'a  2 + KK'b 2 + LL'  c 2 + (HK' + KH')  ab cos 

+ (HL' + LH')ac cos fl+ (KL' + LK')bc cos c~ 
U = HH*a 2 + KK*b 2 + LL*c 2 + (HK* 

+KH*)ab cos ~+ (HL* +LH*)ac  cos fl 
+ (KL* + LK*)bc cos 

U' = H 'H*a  2 + K'K*b 2 + L'L*c 2 + (H'K* 

+ K'H*)ab cos ?+(H'L*  + L'H*)ac cos fl 
+ (K'L* + L'K*)bc cos c~ 

Y = V V ' -  W E (4) 

T, = ( U V ' -  U'W)/Y T2=(U'V-  UW)/Y 
h = T 1 -  [T1] t2=T2-[T2] 
, [ - t l - [ - h ]  . . . . . .  i f 2 W = V <  V' 

t x= i tl . . . . . . . . . . . . . .  in other cases 
t~= J h + t z - [ h + t z ] . . ,  i f 2 W = V <  V' 

[ t2 . . . . . . . . . . . . . .  in other cases 
t t 3= t3=abcVX/Y ,  

(5) 

Table 1. Relationship between fundamental cell and mesh 

F u n d a m e n t a l  c e l l  

0 2pq c o s  V p2 

< < 
< < 

21wI 

q2 S h a p e  x 

= S p 
< R p q 
= E q 
< D q 
= D q 
< P p q 

Table 2. Determination o f  the shape and size of  meshes 
Conditions 

V 

< < 

< < 

M e s h  

Y 

Mesh 
V" Shape x y 

= S 1/V 
< R ~/V CV" 
= E I/V" 
< D I/V' 
= D I / V '  

< P Vv I/v" 

c o s  ~0 

1 - - 2  c o s  2 
c o s  ~' 
c o s  ~u 

c o s  ~0 

1 -  V/2V" 
IWIIV" 
Iwl/VPv' 
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the meaning of H, H ' ,  H * , . . .  being made clear in the 
theorems. 

Theorem 1 

Let the integers 

H,K,L, H' ,K ' ,L '  
fulfil 

hH+kK+IL=O , hH' +kK'  +IL'=O , 

(6) 

(7) 

HCF g = 1 (8) 
H '  ' H '  ' '  K'  ' ' 

21WI < V_< V' (9) 

(such integers (6) do always exist). Then 

p= V V, q= l / v ' ,  cos ~u=lml/I/V-~ (10) 

holds for the fundamental cells of N and the shape and 
size of the meshes of N can be read off the Table 2. 

Theorem 2 

Let the integers (6) and 

H*,K*,L* 
fulfil (7) as well as 

H K L 
H '  K'  L' 
H* K* L* 

(11) 

is not true, we put m=[W/V+½], 2 relabel the values 
H ' - m H ,  K ' - m K ,  L ' - m L  by H',K' ,L '  respectively, 
and 3 return to the place 0. 

If (16) is correct, (10) is valid for the fundamental 
cells of N and Table 2 determines the shape and size 
of the meshes of N. 

2. If interested in the parameters of the mutual dis- 
placement, we proceed as follows. If W< 0, the num- 
bers 

H , K , L , W  (17) 
must be relabelled 

- H , - K , - L , - W ,  (18) 

respectively. We find in any way integers (11) fulfilling 
(12). This may be done for example as follows. Let 

h * = K L ' - L K ' ,  k * = L H ' - H L ' ,  I * = H K ' - K H '  . 

If h * = k * = 0 ,  put H * = 0 ,  K*=0 ,  L * = I .  If h*=0,  
k*-¢0, put H * = 0  and find an integer L* such that 
K * = - ( l + l * L * ) / k *  is also an integer; it is enough 
to test tb_e values 0 , 1 , . . . ,  ]k*l-1  as L*. If h*~0,  
integers K*, L* are to be found in such a way that 
H* = - ( 1  + k ' K *  +l*L*)/h* is again an integer. Here 
it is sufficient to examine independently the values 

2 and 
= 1 ,  (12) 

0<2W_< V< V' (13) 

(such integers (6), (11) do exist). Then (1) [or (2)] are 
standard p.m.d, of the planes (h k l) with respect to 
fundamental cells [or with respect to meshes]. 

Algorithm 

1. We find integers (6) in any way such that (7) and 
(8) hold. This may be done, e.g, as follows. If h=0,  then 

H = 0 ,  K=/ ,  L = - k ,  H ' = - I ,  K ' = 0 ,  L ' = 0 .  

If h ~ 0, we put 

L=HCF(h,k),  H '=k /L ,  K '= -h /L ,  L ' = 0  (14) 

and find the integer K so that 

H=(I+KH') /K '  (15) 

is also an integer. For this purpose it is sufficient to 
test the values 

0, l, 2l, . . . ,  ( IK ' I -1 ) l  

as K. Having found integers (6) we determine V. 
0 Now V' and W are calculated. If V> V', the num- 

bers H, K, L, V are relabelled H ' ,  K', L', V', respectively, 
and vice versa. 1 If 

2IWI_< V (16) 

O, 1 , . . . ,  Ih*l/HCF(h*,k*)- 1 

O, 1 , . . . ,  Ih*I/HCF(h*,I*)- 1 

as K* and L*, respectively. Having found integers (11) 
we calculate U, U', Y, 7"1, T2 and (1) [or (2)] the latest 
triplet (1) [or (2)] being the standard p.m.d, of the 
planes (h k l) with respect to fundamental cells [or with 
respect to meshes]. 

Remark 

Equation 

p2q2 sin 2 ~/= x2y2 sin 2 ~0 
=h2b2c 2 sin 2 o~d-k2a2c 2 sin 2 fl+ 12a2b 2 sin 2 ), 

+ 2hkabc 2 (cos ~ cos f l - cos  ),) 
+ 2hlabZc(cos ct cos y -  cos fl) 
+ 2klaEbc(cos fl cos ~ -  cos ~) 

may be used for checking the calculations. 

4. Examples 

Here (3) have the same meaning as in § 2, § 3. The num- 
bers (1) and (2) designate the standard p.m.d, of the 
planes (h k l) with respect to fundamental cells and 
meshes, respectively. Remember that - unlike (3) - 
they are not uniquely determined. In particular, if 
zl, z2, Z3 are positive standard p.m.d., then 1 - zl, 1 - z2, 
z3 are also standard p.m.d. The calculations are left 
to the reader. 

1. Plane (157) in a primitive cubic lattice. Fundamen- 

tal cell: shape P, p =  I/6, q=  1/14, cos ~ =  V~/14, h = 

A C 2 6 A  - 4* 
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19/75, t2=12/75, t3=1/3/15. Mesh" shape D, x = y =  
1/14, cos ~0=11/14, t~=56/75,  t2=31/75,  t ; =  I/3/15. 

2. Plane (421) in a face-centred cubic lattice. The con- 
ventional unit cell being not primitive we choose a 
primitive one, e.g. that  with a '  = b ' =  c' =a1/2/2, cos c( 
= cos f l ' = c o s  7 ' =  1/2. Then the Miller indices trans- 
form as follows: h' = (k + l)/d, k' = (h + l)/d, l' = 
(h + k)/d where d =  H C F  (k + l, h + l, h + k). Thus h' = 3, 
k ' =  5, l ' =  6. The fundamental  cell as well as the mesh 
are shaped R with p=x=(V~/Z)a , q=(~/-J-4/Z)a, t , = t '  1 
=1/6 ,  t2=t'2=5/14, t3=t'3=(V21/42)a. 

3. Plane (012) in a rhombohedral lattice (a=b=c,  
cos e = c o s  f l=cos  y). The shape depends on the par- 
ameter ~ = cos e satisfying - ½ < ~ < 1. A detailed dis- 
cussion of the meshes based on inequalities (9) yields 
the following results" 
(a) ~ = 0  (this is actually the case of a primitive cubic 

t t 2. lattice): R, x 2 = a z, yZ = 5a 2, t 1 = 0, t 2 = s. 
(b) 0<1~1<½: P, xZ=aZ, y 2 = ( 5 - 4 ~ )  a z, cos 2 cp 

_-~2/(5- 4~), t'l-- 31 ~ I/(~ + 5), t~--(~ + 2)/(~ + 5). 
t t 8 (c) ~=½: D, xZ=yZ=3a2, cos 2 cp=(-~) 2, t1=t~-11 .  

(d) ½<~<-~:  P, x2=a 2, yZ=6(1-~)aZ, cos2 cp 

=(1 - ~ ) / 6 ,  t'x = 3(1 - ~)/(~ + 5), t ~ = ( ~  + 2)/(~ + 5). 
(e) ~=-~: D, xZ=yZ=aZ, cos 2 ~a=(~)2, tl=x~_ , ,  3 t 2 -3s . '  a7 
( f )  ~<~ < 1" P, xZ=6(1-~)a  z, yZ=aZ, cos z ~a 

=(1 - ~)/6, t;  = 3/(~ + 5), t~= 2(2~ + 1)/(~ + 5). 

In all cases t ; z = ( ( - 2 ~ 2 + ~ +  1)/(~ + 5))a z. 
4. Plane (123) in a primitive orthorhombic lattice 

(cos e = c o s  f l=cos  y=0) .  The shape depends on two 
parameters  u=aZ/b 2, v=cZ/b 2. The results (without 
p.m.d.) were presented in the introduction. 

5. P r o o f s  

Let the assumptions of § 3 except the notat ion (5) be 
satisfied. Then vectors a ,b ,e  may be found that 
U ~  [a,b,e]M, lal = a , a .  b=ab cos ~,, . . . .  

Lemma 1. 

If  2Iv. v ' l < v 2 < v  'z holds and [v,v']lv are primitive, 
then they are also fundamental .  

Lemma 2 

Let Ivl_<lv'l, 2 1 v . v ' l > v  2. Then, denoting m =  
[v. v'/v 2 + ½], inequalities 

I v ' -  mvl < Iv'l, I v ' -  mvl < I v ' -  nvl 

hold for every integer n. 
The proofs of  these two lemmas are left to the reader. 

Proof of  theorem 1 

Suppose the integers (6) fulfil (7), (8), (9). Then in- 
tegers H " , K " , L "  may be found so that 

H K L 
H '  K '  L' = 1.  (19) 
H "  K "  L"  

(Here the following theorem well known from algebra, 
the use of  which will be made in this paragraph several 
times, has been applied: i f  HCF ( a l , . . . , a n ) =  1, then 
integers x l , . . . , x n  exist in such a way that a l x l + . . .  
+anX,,= 1.) Let 

v = Ha + Kb + Le (20a) 
v' = H ' a  + K 'b  + L'c (20b) 
v" = H"a + K " b  + L"c  (20c) 

so that 
v 2 = V ,  v ' 2 = l / ' ,  v . v ' = W .  (21) 

Any lattice vector w of  M can be written 

w = ra + sb + te (r, s, t integers) (22) 

since the cell U is primitive. It may also be written 

where 
w = qv + q'v'  + q " v "  

H 
q " =  H '  

r 

(q, q ' ,  q "  integers) 

s t 
(23) 

because of  (20) and (19). If, in particular, w is a lattice 
vector of  N, then 

hr + ks + It = 0 ; (24) 

(7), (24) and (23) imply q "  = 0  since h,k, l are not all 
equal to zero. Th.us any lattice vector w of N may be 
written w = qv+  q 'v '  (q,q' integers), which means that  
[v,v']N are primitive unit cells of  N. According to (21), 
(9) and lemma 1 they are fundamental ,  too. Thus (10) 
is clear and Table 2 is an immediate consequence of  
Table 1. Theorem 1 has been proved with the excep- 
tion of the note that  integers (6) exist. 

Proof of  theorem 2 

Suppose the integers (6), (11) fulfil (7), (12), (13). Let 
(20a, b) and v* = H * a + K * b + L * e  hold so that  (21) and 

v . v * = U ,  v ' . v * = U '  (25) 

are true. The assumptions of theorem 1 being fulfilled, 
[v,v']N are fundamental  cells of  N. According to (13), 
Ivl < Iv'l, v .  v' ___ 0 so that  Iv[ =p ,  Iv'l -- q, v .  v' =pq cos 
and consequently 

v 2 v t 2 - - ( V  . v')2=p2q 2 sin 2 q / # 0 .  (26) 

Any lattice vector (22) of  M can be also written 

w = qv + q 'v '  + q ' v*  (q, q ' ,q* integers) 

t , because of (12); this means that the unit cells [v,v ,v ]M 
are primitive. Thus choosing a point O ~ N the point  
O + v *  lies in the neighbouring plane (h k l). Let us in- 
troduce the vector k for which 

Ikl = 1 ,  v .  k = v ' .  k = 0 (27)  
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is valid. Then real numbers T1, T2, T3 fulfilling 

v*= Tlv + T2v' + T3k (28) 

are clearly p.m.d, of the planes (h k l) with respect to 
fundamental cells; (27) and (28) imply 

v . v* = Txv 2 + Tzv. v' 
v' . y* : TlV. yt.q_ T2¥t2 

from which (5) follows [see (26), (21), (25)]. The volume 
of any primitive cell of M is clearly IT31 Pq sin V=  
IT3II/Y [see (26), (21), (4)] as well as abcl/X, this ex- 
pression being well known from elementary crystallog- 
raphy; thus IT31 =abc~/X/Y~ Now it is evident that (1) 
are standard p.m.d, of the planes (h k l) with respect 
to fundamental cells. If 2 W =  V< V' is fulfilled, then 
[v ' -v ,  v']N are meshes of N and Iv ' -vl=lv ' l ,  
( v ' - v ) .  v ' > 0  is true; this can be easily verified. Ac- 
cordingly in this case -tx,  tl + tz, t3 are p.m.d, and con- 
sequently (2) are the standard p.m.d, of the planes 
(h k l) with respect to meshes. The other cases are 
trivial. Thus the proof of the theorem 2 is completed, 
but the existence of the integers (6), (11) is not yet 
guaranteed. 

Proof of the algorithm 
1. First we are seeking integers (6) fulfilling (7), (8). 

The case h = 0  is trivial. If  h-C0 and (14) holds, H',K'  
(K' #0)  are without common factor and according to 
the above algebraic theorem integers H, K exist such 
that O K ' - / ( H ' =  1. In other words an integer/£ exists 
such that (1 + ~2H')]K' is an integer, too. Since in this 
case (1 + ( / (+  iK')H')/K' (i integer) are integers as well, 
it is possible to find K" with the required property 
among [K'] subsequent integers, e.g. 0 , 1 , . . . ,  ]K ' [ -1 .  
Putting H=lEr, K=IK, (15) is true. Then it is easy to 
verify that integers (6) found in this way fulfil (7), (8). 

Now we have come in the algorithm to the cycle 
which may be repeated several times. If  the values (6) 
satisfy conditions (7), (8) at the point 0, then they do 
so also at the point 1. If  the values (6) satisfy condi- 
tions (7), (8) when entering the cycle for the ith (i > 1) 

time, they satisfy them also when entering it for the 
( i+ 1)th time - if doing that at all. Thus conditions (7), 
(8) are always fulfilled since they are on the first time. 
Accordingly as soon as inequality (16) is found to be 
correct, we interrupt the cycle and apply theorem 1 
following the directions of the algorithm. We have 
only to show that this situation actually occurs at 
some time (i.e. after a finite number of these cycles). 

Let us use notation (20a, b). Assuming that during 
the ith cycle inequality (16) is not satisfied, we get 

[vl- lv ' l ,  2Iv. v ' l>v  2, m = [ v .  v'/v2+½] 

taking the instantaneous values at 2. According to 
lemma 2 ]v ' -mv]<[v ' [ .  But the vector v ' - m v  sub- 
sequently changes its notation to v' at 3. That means 
that the value of the sum Iv[ + Iv'[ when entering the 
cycle for the ( i+ 1)th time is smaller than it was when 
entering it for the ith time. But v, v' are lattice vectors 
of M. Thus the first part of the algorithm and the ex- 
istence of the integers (6) from theorem 1 is proved. 
Notice that the choice of the number m was the best 
in the sense that choosing it in another way we could 
never get a shorter vector v ' - m v  (see the second in- 
equality in lemma 2). 

2. Relabelling, if W<0,  the numbers (17) by (18) 
conditions (7), (8), (13) are satisfied. Integers (11) ful- 
filling (12) exist according to the quoted algebraic 
theorem. It is not difficult to show that they may be 
found in the way given in the algorithm. 

Proof of the remark follows immediately from the 
well known relations of elementary crystallography. 

The author's thanks are due to Professor M. A. 
Jaswon, City University, London, and to Dr A. G. 
Crocker, University of Surrey, Guildford, U.K., for 
valuable comments and suggestions towards improve- 
ments in the paper. 

References 

BEVIS, M. (1969). Aeta Cryst. A25, 370. 
GRUBER, I .  (1966). 7th Congress of the L U.Cr. Abstract 3.5. 
JASWON, M. A. & DOVE, D. B. (1955). Acta Cryst. 8, 88. 


